Geometry CC 1.7 Points of concurrency

1. Construct the perpendicular bisectors for \overline{AC} , \overline{BC} , and \overline{AB} in the triangle below. The point of concurrency is called the **circumcenter**. Label the point of concurrency R and draw a circle with center R and a radius of RA.

What observations can you make?

2. Construct angle bisectors for $\angle A$, $\angle B$ and $\angle C$ on the triangle below. The point of concurrency is called the **incenter**. Label the incenter *I* and set your compass to length from *I* to \overline{BC} . Using this compass setting, draw a circle with center *I*.

What observations can you make?

3. Construct medians drawn from $\angle A$ to \overline{BC} , from $\angle B$ to \overline{AC} , and from $\angle C$ to \overline{AB} on the triangle below. The point of concurrency is called the **centroid.**

Hint: median is a line segment drawn from the vertex of a triangle to the midpoint of the opposite side.

A centroid divides a median into two segments that are in a ratio of 2:1. Use your compass to prove or disprove this statement.

4. Construct the altitude from $\angle A$ to \overline{BC} , from $\angle B$ to \overline{AC} , and from $\angle C$ to \overline{AB} on the triangle below. The point of concurrency is called the **orthocenter**.

Hint: the altitude is perpendicular to the side to which it's drawn - think of constructing a line perpendicular to \overline{BC} and passing through point A

